Anticoagulation
Past, present, and future

Werkgroep Cardiologische centra Nederland (WCN)
1e Dunselman Lecture

1952-2017
Anticoagulant drug development: from serendipity to designer drugs
Lessons learned from the trials

1. The efficacy and safety of anticoagulants is vascular-bed specific
2. Bleeding is a key determinant of thromboembolic outcomes
3. Breakthrough thromboembolic events that occur despite therapeutic anticoagulation are driven by novel mechanisms
Vascular bed-specific anticoagulant efficacy

<table>
<thead>
<tr>
<th>Indication</th>
<th>Efficacy: thrombosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venous thrombosis</td>
<td>decreased by 80-90%</td>
</tr>
<tr>
<td>Stroke in atrial fibrillation</td>
<td>decreased by 70-80%</td>
</tr>
<tr>
<td>Acute coronary syndrome</td>
<td>decreased by 50%</td>
</tr>
<tr>
<td>Atherothrombosis</td>
<td>decreased by 20-40%</td>
</tr>
</tbody>
</table>
Vascular bed-specific bleeding

<table>
<thead>
<tr>
<th>Organ / vascular bed</th>
<th>Bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal tract</td>
<td>Increased by 30%</td>
</tr>
<tr>
<td>Brain</td>
<td>Decreased by 50%</td>
</tr>
<tr>
<td>Uterus</td>
<td>Increased by 200%*</td>
</tr>
<tr>
<td>Other</td>
<td>Decreased by 30%</td>
</tr>
</tbody>
</table>

*Anti-Xa agents
Why was this not recognized previously?

• Historically we thought that bleeding did not matter (inconvenient but reversible)
• More recently bleeding recognized as independent predictor of morbidity and mortality
• NOAC trials have had greater power to detect organ-specific effects
 • Large numbers of patients
 • Better characterization of sites of bleeding (e.g., routine endoscopy, routine brain imaging)
Historical thinking is reflected in approach to bleeding risk prediction and definition

- HAS-BLED
- HAEMORR\textsubscript{2}HAGES
- ATRIA, ORBIT
- ABC bleeding score
- ISTH
- GUSTO
- TIMI
- PLATO
- BARC

No “organ specificity”
Why might the bleeding effects be organ / vascular-bed specific?

Two possible mechanisms:

• Drug specific
 • Local concentration
 • Mechanism of action

• Vascular bed
 • Expression of procoagulant / anticoagulant mediators
High concentration of NOACs in the gut

<table>
<thead>
<tr>
<th></th>
<th>Active drug in gut?</th>
<th>Intraluminal levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dabigatran</td>
<td>Yes (prodrug activated by gut esterases)</td>
<td>80%</td>
</tr>
<tr>
<td>Apixaban</td>
<td>Yes</td>
<td>35%</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>Yes</td>
<td>30%</td>
</tr>
<tr>
<td>Edoxaban</td>
<td>Yes</td>
<td>50%</td>
</tr>
<tr>
<td>Warfarin</td>
<td>No</td>
<td><5%</td>
</tr>
</tbody>
</table>

ICH and cerebral microbleeds

Koennecke, HC. Neurology 2006; 66; 165-171.
Warfarin reduces thrombin generation by reducing formation of factor VII/TF

Coagulation activation

blocks thrombin generation

Tissue factor

(high concentration in basement membrane and adventitia)

VII, X, IX, prothrombin

Warfarin

thrombin
Mechanism of reduced intracranial bleeding with NOACs

• There are high concentrations of tissue factor surrounding cerebral vessels
• Experimental evidence supports hypothesis that NOACs are less effective than warfarin at blocking tissue factor-mediated thrombin generation

Dabigatran is overwhelmed by excess thrombin

Coagulation activation

Tissue factor

(high concentration in basement membrane and adventitia)

VII, X, IX, prothrombin

Thrombin in excess overwhelms dabigatran

thrombin
dabigatran
Summary and clinical implications

- NOAC trials have shown organ specific differences of anticoagulants on bleeding (and thromboembolic events)
- This knowledge can impact choice of anticoagulant (e.g., GI: apixaban, dabigatran 110; ICH: NOAC; menstrual: dabigatran)
Research implications

- Can improved understanding of organ specific effects help to more effectively predict and prevent bleeding? Do we need new bleeding scores for different organs?
- Can better understanding of mechanisms help in development of safer anticoagulants? (e.g., factor XI inhibitors?)
INTERBLEED: a study of risk factors for and outcomes after GI bleeding

Case-control
Risk factors for bleeding

Prospective cohort
Reasons why bleeding results in adverse outcome

Case → 3 months (phone) → 12 months (phone)
Control → 3 months (phone) → 12 months (phone)
Lessons learned from the trials

1. The efficacy and safety of anticoagulants is vascular-bed specific

2. **Bleeding is a key determinant of thromboembolic outcomes**

3. Breakthrough thromboembolic events that occur despite therapeutic anticoagulation are driven by novel mechanisms
Bleeding and thromboembolism in orthopedic VTE prevention trials

Bleeding and thromboembolism in stroke prevention in AF trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Stroke</th>
<th>Stroke CHADS$_2$ 3+</th>
<th>Any Bleeding</th>
<th>Maj. bleeding</th>
<th>Maj. bleed CHADS$_2$ 3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARISTOTLE (5/2.5mg bid)</td>
<td>1.3%</td>
<td>2.0%</td>
<td>18%</td>
<td>2.1%</td>
<td>2.9%</td>
</tr>
<tr>
<td>ENGAGE (60/30 mg od)</td>
<td>1.5%</td>
<td>-</td>
<td>14%</td>
<td>2.8%</td>
<td>-</td>
</tr>
<tr>
<td>RELY (150 mg bid)</td>
<td>1.1%</td>
<td>1.9%</td>
<td>16%</td>
<td>3.3%</td>
<td>4.8%</td>
</tr>
<tr>
<td>ROCKET (20/15mg od)</td>
<td>1.7%</td>
<td>-</td>
<td>15%</td>
<td>3.6%</td>
<td>-</td>
</tr>
</tbody>
</table>

Adverse consequences of bleeding

Bleeding reduced by 38%
Deaths reduced by 17%

OASIS-5: link between bleeds and deaths

Number of deaths at 180 days

<table>
<thead>
<tr>
<th></th>
<th>Enoxaparin</th>
<th>Fondaparinux</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Bleeds</td>
<td>526</td>
<td>523</td>
<td>+3</td>
</tr>
<tr>
<td>Minor bleeds</td>
<td>33</td>
<td>13</td>
<td>+20</td>
</tr>
<tr>
<td>Major bleeds</td>
<td>79</td>
<td>38</td>
<td>+41</td>
</tr>
<tr>
<td>Total</td>
<td>638</td>
<td>574</td>
<td>+64</td>
</tr>
</tbody>
</table>

Weighing the importance of bleeding

<table>
<thead>
<tr>
<th>Event</th>
<th>Death HR (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic stroke</td>
<td>6.5 (5.9-7.1)</td>
<td>1.00</td>
</tr>
<tr>
<td>Systemic embolism</td>
<td>5.8 (4.7-7.3)</td>
<td>0.90</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>21.3 (17.6-25.7)</td>
<td>3.29</td>
</tr>
<tr>
<td>Subdural bleeding</td>
<td>5.1 (3.8-6.9)</td>
<td>0.79</td>
</tr>
<tr>
<td>Extracranial Bleeding</td>
<td>4.6 (4.2-5.1)</td>
<td>0.71</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>6.2 (5.4-7.1)</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Why is bleeding associated with thromboembolic events and death?

Bleeding → Death

- Direct adverse effects of bleeding (e.g., hypovolemic, acute stress)
- Discontinuation of effective antithrombotic therapies
- Treatments for bleeding (e.g., antifibrinolytic therapy, red blood cell transfusion)

Summary and clinical implications

• Bleeding independently predicts subsequent CV events and death
• Mechanism remains poorly understood
• Major bleeding should weight similarly to thromboembolic events when considering the net benefit of a treatment
Research implications

• Can prevention of bleeding by targeting risk factors help to prevent CV events and death?
• Can improved treatment of bleeding help to prevent CV events and death?
• Can targeting the mechanisms linking bleeding with subsequent CV events and death help to prevent these complications?
Pantoprazole to prevent upper GI bleeding…and related CV events

Outcome: upper GI complications
Mean follow up: 3-4 years

INTERBLEED: a study of risk factors for and outcomes after GI bleeding

<table>
<thead>
<tr>
<th>Case-control</th>
<th>Prospective cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk factors for bleeding</td>
<td>Reasons why bleeding results in adverse outcome</td>
</tr>
</tbody>
</table>

Case --→ 3 months (phone) --→ 12 months (phone)

Control --→ 3 months (phone) --→ 12 months (phone)
Lessons learned from the trials

1. The efficacy and safety of anticoagulants is vascular-bed specific
2. Bleeding is a key determinant of thromboembolic outcomes
3. Breakthrough thromboembolic events that occur despite therapeutic anticoagulation are driven by novel mechanisms
Breakthrough thromboembolic events

- 1 in 50 AF patients experience stroke each year despite therapeutic anticoagulation
- 1 in 20 mechanical valve patients experience thromboembolism despite therapeutic anticoagulation with dabigatran
Why do thrombotic events occur despite OAC treatment?

• Anticoagulant effect of the drugs is weak
 • low drug levels (dose, compliance)

• Stimulus for thrombogenesis overcomes or is non-responsive to anticoagulants
 • AF: inflammation (blood - IL-6, CRP; LA wall inflammation) and up-regulation of procoagulant molecules (e.g., TF, PAI-1)
 • Valves: contact activation
Persistent coagulation activation despite OAC treatment in AF

Persistent coagulation activation independently predicts stroke

Potential for anti-inflammatory treatment to improve response to OAC

• Colchicine
 • Targets neutrophils, monocytes
 • Lowers CRP
• Inflammation linked with coagulation activation
Anti-inflammatory therapy to suppress coagulation activation
OASIS 5/6: Catheter thrombosis

Event rate (%)

Mechanism of catheter thrombosis

Catheter-induced clotting

- Heparin
- Enoxaparin
- Fondaparinux

Heart attack-induced clotting

- Heparin
- Enoxaparin
- Fondaparinux

Anticoagulants for heart valves

RE-ALIGN: Stroke/valve thrombosis

Contact-induced coagulation activation

Modulating contact-induced coagulation activation by targeting factors XI or XII

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antisense oligonucleotides</td>
<td>Reduce hepatic synthesis of factor XII or factor XI</td>
</tr>
<tr>
<td>Aptamers</td>
<td>Bind factor XII or factor XI and block activity</td>
</tr>
<tr>
<td>Antibodies</td>
<td>Bind factor XII or factor XI and block activation or activity</td>
</tr>
<tr>
<td>Small molecules</td>
<td>Bind reversibly to active site of factor XIIa or factor Xla and block activity</td>
</tr>
<tr>
<td>Polyanion antagonists</td>
<td>Neutralize polyphosphates or nucleic acids via ionic interactions, thereby attenuating contact pathway activation</td>
</tr>
</tbody>
</table>

Conclusion

• Recent dramatic advances in anticoagulant therapy have revolutionized medicine
• In addition to informing efficacy and safety, RCTs have provided insights into mechanisms of thrombosis and bleeding
• Improved insights offer potential to develop unique approaches to thrombosis prevention and treatment